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Abstract

The ®rst order shear deformation plate theory is presented for simply-supported, cross-ply laminated, rectangular
hybrid plate without assuming a priori the distribution of electric potential and temperature across its thickness. The
coupled constitutive equations for electric displacement are used in the charge equation of equilibrium to obtain its

solution in terms of displacements of the plate. The Navier type solution for static thermoelectric load is used in
three dimensional equilibrium equations to get transverse stress components. This theory is assessed by comparison
with the three dimensional solution. The in¯uence of the coupled e�ects is found to be signi®cant for relatively thick

piezoelectric layers. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Smart plate and shell structures are currently being developed using piezoelectric layers for sensing,

actuation and control. Exact three dimensional (3D) solutions have been presented for piezoelectric (see

Ray et al., 1992; Dube et al., 1996) and hybrid (see Xu et al., 1995; Kapuria et al., 1997, 1999) simply

supported rectangular plates under thermoelectromechanical loads. Assessment of uncoupled 2D

classical lamination theory (CLT) and ®rst order shear deformation theory (FSDT) developed by

Tauchert (1992) and Jonnalagadda et al. (1994) for hybrid plates has been presented by Tang et al.

(1996) for rectangular plates by comparison with 3D solution for simply supported edges. In general,

the direct piezoelectric e�ect, the constitutive equations of electric displacement and the charge equation
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of equilibrium are ignored and the electric potential is assumed a priori to vary linearly across the
thickness of the actuated layer. Tzou and Ye (1994) have included the direct piezoelectric e�ect in their
theory in an adhoc manner and did not satisfy the charge equation of equilibrium. Noda and Kimura
(1998) have presented classical plate theory formulation in which the charge equations of equilibrium
are solved in terms of the de¯ection of the plate. However, the temperature is apriori assumed to vary
linearly across the thickness of the hybrid plate.

In this work, a coupled ®rst order shear deformation plate theory is presented for rectangular hybrid
plate without any a priori assumption of the distribution of electric potential and temperature across its
thickness. The thermal equilibrium equations are solved exactly. The coupled constitutive equations of
electric displacement are used in the charge equations of equilibrium to obtain the exact solution for the
electric potential in terms of the displacements of the panel. Fourier series solution is presented for
simply-supported hybrid plates consisting of cross-ply composite elastic substrate with some piezoelectric
layers subjected to static electrothermomechanical load. This solution is used in 3D equilibrium
equations to obtain transverse stresses. The de¯ection and stresses obtained by the present theory are
compared with the 3D solution to assess this theory. The coupled e�ects have signi®cant in¯uence on
the response for relatively thick piezoelectric layers.

2. Solution for coupled FSDT

Consider an L-layered hybrid rectangular plate of sides a and b, made of cross-ply composite laminate
and piezoelectric laminae with the principal directions along the Cartesian coordinates. The Cartesian
coordinates x, y span the midplane. At x � 0, a, and at y � 0, b the panel is simply-supported,
electrically grounded and held at the stress-free reference temperature. The electric ®eld induced due to
stress and temperature is not neglected compared to the electric ®eld applied for actuation. Denoting
di�erentiation by subscript comma, in FSDT the displacements (u, v, w ) at (x, y, z ) are approximated
as

u � u0�x, y� � zcx�x, y�, v � v0�x, y� � zcy�x, y�, w � w0�x, y�, �1�

where u0, v0, w0 are displacements of midplane and cx, cy are rotations of its normal. The strains are

24 ex
ey
gxy

35 � e0 � zk, e0 �

26664
u0,x

v0,y

u0,y � v0,x

37775, k �
24cx, x

cy, y

cx, y � cy, x

35,
24 ez
gyz
gzx

35 �
2664
0
cy � w0

,y

cx � w0
,x

3775 �2�

For linear orthorohmbic piezoelectric material of class mm2, polarised in direction z with principal
directions along x, y, z, the constitutive equations relating the stress s, the strain e, the electric ®eld
E � �Ex, Ey, Ez�T, the electric displacement D � �Dx, Dy, Dz�T and the temperature rise T above the
stress-free reference temperature, are related by

e � Ss� d TE� aT, D � ee� ZE� pT �3�
with e � dS ÿ1 and superscript T denotes matrix transpose. S, d, e, a, Z, p are respectively the matrices
of elastic compliance, piezoelectric strain constants, piezoelectric stress constants, coe�cients of thermal
expansion, permittivities for constant strain ®eld and pyroelectric constants for constant strain ®eld,
with
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S �

26666664
1=E1 ÿn21=E2 ÿn31=E3 0 0 0
ÿn12=E1 1=E2 ÿn32=E3 0 0 0
ÿn13=E1 ÿn23=E2 1=E3 0 0 0
0 0 0 1=G23 0 0
0 0 0 0 1=G31 0
0 0 0 0 0 1=G12

37777775, d T �

26666664
0 0 d31
0 0 d32
0 0 d33
0 d24 0
d15 0 0
0 0 0

37777775,

a �

26666664
a1
a2
a3
0
0
0

37777775Z �
24 Z11 0 0
0 Z22 0
0 0 Z33

35, e �
24 0 0 0 0 e15 0
0 0 0 e24 0 0
e31 e32 e33 0 0 0

35, p �
24 0
0
p3

35,

E � ÿ
24f,x

f,y

f,z

35,

�4�

where Ei are Young's moduli, nij are Poisson's ratios, Gij are shear moduli and f is the electric
potential. As by Tauchert (1992), Jonnalagadda et al. (1994) and Tang et al. (1996), the temperature
dependence of material properties has not been included. Using Eq. (2) and the plate theory assumption
of sz ' 0, Eq. (3) yields24sx

sy
txy

35 �
24Q11 Q12 0
Q21 Q22 0
0 0 Q66

3524 ex
ey
gxy

35�
24 e31
e32
0

35f,z ÿ
24b1
b2
0

35T, �
tyz
tzx

�
�
�
Q44gyz � e24f,y

Q55gzx � e15f,x

�
; �5�

Dx � e15gzx ÿ Z11f,x, Dy � e24gyz ÿ Z22f,y, Dz � e31ex � e32ey ÿ Z33f,z � p3T, �6�

with

Q11 � E1

1ÿ n12n21
, Q12 � n12E2

1ÿ n12n21
, Q22 � E2

1ÿ n12n21
, Q66 � G12,e31 � Q11d31 �Q12d32,

e32 � Q12d31 �Q22d32, b1 � Q11a1 �Q12a2, b2 � Q12a1 �Q22a2,Q44 � G23, Q55 � G31,

e24 � Q44d24, e15 � Q55d15

�7�

The force and moment resultants �Nx, Ny, Nxy, Qx, Qy, Mx, My, Mxy� for the edge of the midplane and
the load �px, py, pz, mx, my� per unit area of the midplane are de®ned in terms of the stresses by

�
Nx, Ny, Nxy, Qx, Qy, Mx, My, Mxy

� � �h=2
ÿh=2
�sx, sy, txy, tzx, tzy, zsx, zsy, ztxy � dz,

�px, py, pz, mx, my� � �tzx, tzy, sz, ztzx, ztzy �jh=2ÿh=2 �8�

where h is the plate thickness. Using expressions of stresses from Eq. (5) in Eq. (8) yields following
relations between the resultants and displacements:
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and �
Ne

x, N
e
y, N

t
x, N

t
y

Me
x, M

e
y,M

t
x, M

t
y

�
�
�h=2
ÿh=2

�
1
z

��
e31f,z, e32f,z, ÿ b1T, ÿ b2T

�
dz,

�
Qe

x

Qe
y

�
�
�h=2
ÿh=2

�
e15f,x

e24f,y

�
dz

�10�

�Aij, Bij, Dij � �
� h=2
ÿh=2 k

2
ijQij�1, z, z2� dz and kij � 1 except for k2

44 � k2
55 � 5=6: The boundary conditions

are taken as:

x � 0, a: Nx � 0, v0 � w0 � 0, cy � 0, Mx � 0, T � 0, f � 0,

y � 0, b: Ny � 0, u0 � w0 � 0, cx � 0, My � 0, T � 0, f � 0 �11�

Let the interfaces of the actuator layers with the elastic substrate be grounded, the ambient temperatures
at z �3h=2 be T1�x�, T2�x� and h1, h2 be the convective heat transfer coe�cients at z �3h=2: The
thermal and the electric potential problems are solved exactly. The variables are expanded in Fourier
series as:

ÿ
u0, cx, Qx, px, mx, tzx

�
�
X1
m�1

X1
n�1

ÿ
u0, cx, Qx, px, mx, tzx

�
mncos �mx sin �ny,

�
v0, cy, Qy, py, my, tyz

�
�
X1
m�1

X1
n�1

�
v0, cy, Qy, py, my, tyz

�
mn

sin �mx cos �ny,

�
w0, pz, sx, sy, sz, Nx, Ny, Mx, My, T, f

�
�
X1
m�1

X1
n�1

�
w0, pz, sx, sy, sz, Nx, Ny, Mx, My, T, f

�
mn

sin �mx sin �ny,

ÿ
txy, Nxy,Mxy

� �X1
m�1

X1
n�1

ÿ
sxy, Nxy,Mxy

�
mn

cos �mx cos �ny, �12�

with �m � mp=a, �n � np=b: The thermal equilibrium equation without body heat source is

kxT,xx � kyT,yy � kzT,zz � 0, i:e:, Tmn, zz ÿ
�

�m2kx � �n2ky

�
Tmn=kz � 0, �13�

where kx, ky, kz are thermal conductivity coe�cients. The solution for the kth layer between zkÿ1 and zk
in terms of constants Amn

ik is
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T
�k�
mn�z� �

X2
i�1

Amn
ik ezrik �14�

where r1k � ÿr2k � m�k�mn � �� �m 2k�k�x � �n2k�k�y �=k�k�z �1=2: The superscript k refers to the kth lamina. This
superscript will often be omitted for simplicity. Let the (m, n )th Fourier component of the heat ¯ow
rate and temperature at the surface at zk be qkmn�ÿk�k�z T �k�mn; zjz�zk and T k

mn: Using Eq. (14), the transfer
function Hk for these is obtained as

�
T k

mn

qkmn

�
� Hk

24T �kÿ1�mn

q�kÿ1�mn

35, Hk �
24 cosh �m�k�mn ÿsinh �m�k�mn=c

ÿcsinh �m�k�mn cosh �m�k�mn

35,
�

em
�

Amn
1k

eÿm
�

Amn
2k

�
�
�
0:5 ÿ0:5=c
0:5 0:5=c

�24T �kÿ1�mn

q�kÿ1�mn

35
�15�

with c � k�k�z m�k�mn, �m�k�mn�m�k�mn�zkÿzkÿ1�, m��m�k�mnzkÿ1: The global transfer function H is obtained as�
T L

mn

qLmn

�
� H

�
T 0

mn

q0mn

�
, where H �

�
H11 H12

H21 H22

�
� HLHLÿ1 � � �H2H1: �16�

The thermal boundary conditions at z �3h=2 are:

z � ÿh
2
: q0mn � ÿh1

ÿ
T 0

mn ÿ T1mn

�
, z � h

2
: qLmn � h2

ÿ
T L

mn ÿ T2mn

� �17�

The case of prescribed surface temperatures corresponds to h1 � h2 � 1: Using Eqs. (16) and (17),
yields

T 0
mn �

�h2H12 ÿH22�h1T1mn
ÿ h2T2mn

H21 ÿ h2H11 ÿ h1H22 � h1h2H12
, q0mn � ÿh1

ÿ
T 0

mn ÿ T1mn

� �18�

The constants Amn
ik in the solution (14) for Tmn are then obtained successively using Eq. (15).

Using the constitutive Eq. (6), the expansions (12) and the solution (14) for temperature, in the charge
equation of equilibrium without any body charge, viz., Dx; x � Dy; y � Dz; z � 0, reduces it to the
following form for a point in the kth layer:

Z33fmn, zz ÿ
ÿ

�m2Z11 � �n2Z22
�
fmn

� ÿ �m�e31 � e15 �cxmn
ÿ �n�e32 � e24 �cymn

ÿ
ÿ

�m2e15 � �n2e24
�
w0
mn � p3

X2
i�1

rikA
mn
ik ezrik �19�

Its solution in terms of constants Bmn
ik is given by

fmn �
X2
i�1

Bmn
ik egikz �

�m�e31 � e15 ��k�cxmn
� �n�e32 � e24 ��k�cymn

�
�

�m 2e
�k�
15 � �n2 e

�k�
24

�
w0
mnÿ

a2
mnZ33

��k�
�
�
p3
Z33

��k�X2
i�1

rikA
mn
ik erikzÿ

r2
ik ÿ a2

mn

��k� �20�
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where a�k�mn���Z�k�11 �m2�Z�k�22 �n2�=Z�k�33 �1=2, g1k�ÿg2k�a�k�mn: Using Eq. (20) in (6) yields

Dzmn
� ÿ

h
�me
�k�
31

�
u0mn � zcxmn

�i
ÿ
h

�ne
�k�
32

�
v0mn � zcymn

�i
ÿ Z�k�33

X2
i�1

Bmn
ik gik egikz

ÿ p
�k�
3

X2
i�1

Amn
ik a�k�

2

mn erikz

r2
ik ÿ a�k�

2

mn

�21�

Substituting T and f from Eqs. (14) and (20) in Eq. (10) yields�
Nt

x Mt
x

Nt
y Mt

y

�
mn

� ÿ
XL
k�1

X2
i�1

�
b1
b2

��k��
�rik ~rik

�
Amn

ik =rik,

�
Ne

x Me
x

Ne
y Me

y

�
mn

�
XL
k�1

X2
i�1

�
e31
e32

��k��
�gik ~gik

�
Bmn

ik �
24 �N

e

1
�M
e

1

�N
e

2
�M
e

2

35
mn

,

�
Qe

x

Qe
y

�
mn

�
XL
k�1

X2
i�1

�
�me15
�ne24

�
�gik
gik

Bmn
ik �

�
Qet

1

Qet
2

�
mn

�
�
Q0

1

Q0
2

�
mn

w0
mn �

�
Q1

1

Q1
2

�
mn

cxmn
�
�
Q2

1

Q2
2

�
mn

cymn
�22�

where

�gik � e gikzk ÿ e gikzkÿ1 , ~gik � zk e gikzk ÿ zkÿ1 e gikzkÿ1 ÿ �gik=gik, for gij � gij, rij,

24 �N
e

j

�M
e

j

35
mn

�
XL
k�1

X2
i�1

p
�k�
3 rike

�k�
3j

Z�k�33

�
r2
ik ÿ a�k�

2

mn

�Amn
ik

�
�rik
~rik

�
, j � 1, 2;

�
Qet

1

Qet
2

�
mn

�
XL
k�1

24 �me
�k�
15

�ne
�k�
24

35X2
i�1

p
�k�
3 �rikA

mn
ik

Z�k�33

�
r2
ik ÿ a�k�

2

mn

� :
�
Q

p
1

Q
p
2

�
mn

�
XL
k�1

24 �me
�k�
15

�ne
�k�
24

35 �zk ÿ zkÿ1 �lpk
Z�k�33 a

�k� 2
mn

, p � 0, 1, 2: �23�

with

l0k � �m 2e
�k�
15 � �n2e

�k�
24 , l1k � �m�e31 � e15 ��k�, l2k � �n�e32 � e24 ��k�

The equations of equilibrium without body force are:

Nx, x �Nxy, y � px � 0, Nxy, x �Ny, y � py � 0, Qx, x �Qy, y � pz � 0, �24a�

Mx, x �Mxy, y ÿQx �mx � 0, Mxy, x �My, y ÿQy �my � 0: �24b�
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Using Eqs. (9), (2) and (22), these reduce to following algebraic equations:

X mnU mn � �P
mn � �E

mn
Bmn ÿ RmnU mn �25�

with

U mn �
h
u0 v0 w0 cx cy

iT

mn
, �P

mn

1 �
h
px � �m

�
�N
e

1 �Nt
x

�i
mn
, �P

mn

2 �
h
py � �n

�
�N
e

2 �Nt
y

�i
mn
,

�P
mn

3 �
h
pz ÿ �mQet

1 ÿ �nQet
2 �
i
mn, �P

mn

4 �
h
mx � �m

�
�M
e

1 �Mt
x

�
ÿQet

1

i
mn
,

�P
mn

5 �
h
my � �n

�
�M
e

2 �Mt
y

�
ÿQet

2

i
mn,

�E
mn

1, 2kÿ2�i � �me
�k�
31 �gik, �E

mn

2, 2kÿ2�i � �ne
�k�
32 �gik, i � 1, 2, k � 1, . . . ,L

�E
mn

3, 2kÿ2�i � ÿ
�

�m2e
�k�
15 � �n2e

�k�
24

�
�gik=gik, �E

mn

4, 2kÿ2�i � �m
�
e
�k�
31 ~gik ÿ e

�k�
15 �gik=gik

�
,

�E
mn

5, 2kÿ2�i � �n
�
e
�k�
32 ~gik ÿ e

�k�
24 �gik=gik

�
, Rmn

ij � Rmn
ji � 0, i � 1, 2; j � 1, . . . ,5,

Rmn
33 �

ÿ
�mQ0

1 � �nQ0
2

�
mn, Rmn

34 �
ÿ

�mQ1
1 � �nQ1

2

�
mn, Rmn

35 �
ÿ

�mQ2
1 � �nQ2

2

�
mn,

Rmn
43 � Q0

1mn
, Rmn

44 � Q1
1mn

, Rmn
45 � Q2

1mn
, Rmn

53 � Q0
2mn

, Rmn
54 � Q1

2mn
, Rmn

55 � Q 2
2mn

,

X mn
11 � �m2A11 � �n2A66, X mn

12 � �m �n�A12 � A66 �, X mn
13 � X mn

23 � 0,

X mn
14 � �m2B11 � �n2B12,X

mn
15 � X mn

24 � �m �n�B12 � B66 �, X22 � �m2A66 � �n2A22,

X25 � �m 2B66 � �n2B22,

X33 � �m 2A55 � �n2A44, X34 � �mA55, X35 � �nA44,

X44 � �m 2D11 � �n2D66 � A55, X45 � �m �n�D12 �D66 �, X55 � �m2D66 � �n2D22 � A44, X mn
ij � X mn

ji ,

Bmn � �Bmn
11 Bmn

21 Bmn
12 Bmn

22 � � �Bmn
1L Bmn

2L

�T
:

The electric boundary conditions at z �2h=2 may be prescribed values of f or Dz: The electric
potential of some interfaces may be prescribed. At an interface where the potential is not prescribed, the
two conditions of continuity of f and Dz are to be satis®ed. At an interface where the potential is
prescribed, the conditions are that the potential of the two layers at this interface must equal the
prescribed potential. Thus the 2L unknown coe�cients Bmn

ij can be solved in terms of the displacement
variables. In particular, the following electrical boundary conditions are considered:
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z � ÿh=2: f � f1�x, y�, z � h=2: f � f2�x, y� or Dz � D2�x, y�, �26a�

optionally at z � z1: f � f3�x, y�: �26b�

The continuity conditions at the interfaces are:��f, Dz�jz�zk
��k�� ��f, Dz �jz�zk

��k�1�
, k � 1, . . . ,Lÿ 1 �26c�

In case f3 is applied, the continuity condition for Dz at the ®rst interface �k � 1� is replaced by Eq.
(26b). Substitution of Eqs. (20) and (21) into conditions Eq. (26) yields following algebraic equations for
Bmn

ij in terms of the displacement variables:

Y mnBmn � F mnU mn � G mn �27�
The non-zero elements of Y mn, F mn, G mn are:

Y mn
1j � egj1z0 , Y mn

2k, 2kÿ2�j � egjkzk , Y mn
2k, 2k�j � ÿegj, k�1zk ,

Y mn
2k�1, 2kÿ2�j � Z�k�33 gjk egj, kzk , Y mn

2k�1, 2k�j � ÿZ�k�1�33 gj, k�1 egj, k�1zk , for j � 1, 2; k � 1, . . . ,Lÿ 1

if f2 is prescribed, then

Y mn
2L, 2Lÿ2�j � egjLzL ,

else

Y mn
2L, 2Lÿ2�j � Z�L�33 gjL egjLzL ,

if f3 is prescribed:

Y mn
3j � egj1z1 ,

F mn
13 � c

�1�
3 , F mn

14 � c
�1�
4 , F mn

15 � c
�1�
5 , G mn

1 � c�1�t � f1mn
,

F mn
2k, 3 � c

�k�
3 ÿ c

�k�1�
3 , F mn

2k, 4 � c
�k�
4 ÿ c

�k�1�
4 , F mn

2k, 5 � c
�k�
5 ÿ c

�k�1�
5 , G mn

2k � c
�k�
t ÿ c�k�1�t ,

F mn
2k�1, 1 � �c

�k�
1 ÿ �c

�k�1�
1 , F mn

2k�1, 2 � �c
�k�
2 ÿ �c

�k�1�
2 , F mn

2k�1, 4 � �c
�k�
4 ÿ �c

�k�1�
4 ,

F mn
2k�1, 5 � �c

�k�
5 ÿ �c

�k�1�
5 , G mn

2k�1 � �c
�k�
t ÿ �c�k�1�t , for k � 1, . . . ,Lÿ 1

if f2 is prescribed:

F mn
2L, 3 � c

�L�
3 , F mn

2L, 4 � c
�L�
4 , F mn

2L, 5 � c
�L�
5 , G mn

2L � c�L�t � f2mn
,

if D2 is prescribed:

F mn
2L, 1 � �c

�L�
1 , F mn

2L, 2 � �c
�L�
2 , F mn

2L, 4 � �c
�L�
4 , F mn

2L, 5 � �c
�L�
5 , G mn

2L � �c�L�t �D2mn
,
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if f3 is prescribed:

F mn
33 � c

�1�
3 , F mn

34 � c
�1�
4 , F mn

35 � c
�1�
5 , G mn

3 � c�1�t � f3mn
,

where

c
�k�
3 � ÿ

 
�m 2e15 � �n2e24

a2
mnZ33

!�k�
, c

�k�
4 � ÿ �m

�
e31 � e15
a2
mnZ33

��k�
,

c
�k�
5 � ÿ �n

�
e32 � e24
a2
mnZ33

��k�
, c�k�t � ÿ

 
p3
Z33

X2
i�1

Amn
ik rikerikzk

r2
ik ÿ a2

mn

!�k�
,

�c
�k�
1 � ÿ �me

�k�
31 , �c

�k�
2 � ÿ �ne

�k�
32 , �c

�k�
4 � ÿ �mzke

�k�
31 , �c

�k�
5 � ÿ �nzke

�k�
32 ,

�c�k�t � ÿ
 
p3
X2
i�1

Amn
ik a2

mne
rikzk

r2
ik ÿ a2

mn

!�k�
:

The solution of Eq. (27) yields

Bmn � �F
mn
U mn � �G

mn �28�
where �F

mn��Y mn�ÿ1F mn, �G
mn��Y mn�ÿ1G mn: Substituting Bmn from Eq. (28) in Eq. (25) yields following

explicit algebraic equations for U mn:ÿ
X mn ÿ �E

mn �F
mn � Rmn

�
U mn � �P

mn � �E
mn �G

mn �29�
These are solved for U mn and Bmn are then obtained from Eq. (28). A convergence study would decide
the number of terms to be retained in the Fourier series for desired accuracy. The inplane stresses are
obtained from Eq. (5) using Eqs. (12), (14) and (20). Three-dimensional equilibrium equations are then
used to obtain transverse stresses: tzx �ÿ

� �sx; x � txy; y� dz, tzy �ÿ
� �sy; y � txy; x� dz, sz �ÿ

� �tzx; x �
tzy; y� dz:

3. Solution for coupled CLT

The transverse shear strains are neglected in CLT. The solution for coupled CLT is similar to that for
the coupled FSDT with the following changes. The shear stress resultants Qx, Qy are not obtained from
the constitutive equations (5), but from the equilibrium equations (24b). These are substituted in the
third equilibrium equation of (24a) to yield

Mx, xx � 2Mxy, xy �My, yy �mx, x �my, y � pz � 0: �30�
The fourth and ®fth equilibrium equations (24b) are replaced by the following equations for zero
transverse shear strains:

cx � ÿw0
x, cy � ÿw0

y: �31�

S. Kapuria, P.C. Dumir / International Journal of Solids and Structures 37 (2000) 6131±6153 6139



Thus the ®rst and second rows of matrices X mn, �E
mn
, Rmn, �P

mn
are the same as in FSDT and the non-

zero elements in the third to ®fth rows of these matrices are given by

X mn
31 � �m3B11 � �m �n�2B66 � B12 �, X mn

32 � �m2 �n�B12 � 2B66 � � �n3B22,

X mn
34 � �m3D11 � �m �n2�2D66 �D12 �, X mn

35 � �m2 �n�D12 � 2D66� � �n3D22,

X mn
43 � �m, X mn

44 � 1, X mn
53 � �n, X mn

55 � 1,

�E
mn

3, 2kÿ2�i �
�

�m 2e
�k�
31 � �n2e

�k�
32

�
~gik, �P

mn

3 �
h
ÿ pz � �mmx � �nmy � �m2

ÿ
Me

1 �Mt
x

�� �n2
�
Me

2 �Mt
y

�i
mn
:

4. Results and discussion

Results are presented for simply supported hybrid square plate made of 8-layered cross-ply graphite-
epoxy laminate [08/908/08/08]s with PZT layers bonded to its faces. The orientation is given relative to x-
direction. The top PZT layer acts as a sensor and the bottom one as an actuator. All plies of the elastic
substrate laminate have equal thickness. The thickness of the sensor layer is taken as h/10 and the
thickness of the actuator layer has been varied. The properties of graphite-epoxy composite are selected
as (see Xu et al., 1995; Kapuria et al., 1999): �EL, ET, GLT, GTT���181, 10:3, 7:17, 2:87� GPa, dij�0, p3
� 0, �aL, aT� � �0:02, 22:5� � 10ÿ6 Kÿ1, �nLT, nTT� � �0:28, 0:33�,�ZLL, ZTT� � �30:96, 26:53� � 10ÿ12 F/m,
�kL, kT� � �36:42, 0:96� W mÿ1 Kÿ1, where L and T denote directions parallel and transverse to the
®bres, nLT is Poisson's ratio for strain in the T direction under uniaxial normal stress in the L direction,

Table 1

Comparative study of 2D solutions for thermal load �ha=h � 0:1)

S Exact Uncoupled Coupled (no pyroelectric e�ect) Coupled

FSDT CLT FSDT CLT FSDT CLT

�w (0.5a, 0.5b, 0) 4 ÿ0.3418 ÿ0.5832 ÿ0.5718 ÿ0.5811 ÿ0.5705 ÿ0.5697 ÿ0.5565
10 ÿ0.5372 ÿ0.5866 ÿ0.5840 ÿ0.5879 ÿ0.5855 ÿ0.5697 ÿ0.5668
100 ÿ0.5696 ÿ0.5864 ÿ0.5864 ÿ0.5886 ÿ0.5886 ÿ0.5688 ÿ0.5688

�u (0, 0.5b, ÿ0.5h ) 4 ÿ2.238 ÿ1.553 ÿ1.672 ÿ1.551 ÿ1.671 ÿ1.541 ÿ1.659
10 ÿ1.873 ÿ1.758 ÿ1.785 ÿ1.759 ÿ1.786 ÿ1.743 ÿ1.769
100 ÿ1.796 ÿ1.809 ÿ1.809 ÿ1.811 ÿ1.811 ÿ1.793 ÿ1.794

�sy (0.5a, 0.5b, 0.4+h ) 4 ÿ0.8704 ÿ0.8866 ÿ0.8896 ÿ0.8866 ÿ0.8897 ÿ0.8870 ÿ0.8900
10 ÿ0.8988 ÿ0.9029 ÿ0.9036 ÿ0.9028 ÿ0.9035 ÿ0.9033 ÿ0.9040
100 ÿ0.9068 ÿ0.9064 ÿ0.9064 ÿ0.9064 ÿ0.9064 ÿ0.9068 ÿ0.9068

�sy (0.5a, 0.5b, ÿ0.5h ) 4 1.281 ÿ1.000 ÿ1.240 ÿ0.0910 ÿ0.1151 ÿ1.852 ÿ2.089
10 ÿ0.0753 ÿ0.0902 ÿ0.0956 ÿ0.0802 ÿ0.0856 ÿ0.1443 ÿ0.1497
100 ÿ0.1333 ÿ0.0894 ÿ0.0895 ÿ0.0792 ÿ0.0792 ÿ0.1371 ÿ0.1372

�f (0.5a, 0.5b, 0.5h ) 4 0.1645 ± ± 0.0889 0.0530 0.8954 0.8700

10 0.7564 ± ± ÿ0.0922 ÿ0.1008 0.9938 0.9875

100 0.9548 ± ± ÿ0.1375 ÿ0.1376 1.017 1.017

�tzx (0, 0.5b, ÿ0.3h ) 4 ÿ0.2451 ÿ0.1962 ÿ0.2135 ÿ0.1958 ÿ0.2131 ÿ0.1937 ÿ0.2108
10 ÿ0.2468 ÿ0.2384 ÿ0.2423 ÿ0.2386 ÿ0.2426 ÿ0.2354 ÿ0.2393
100 ÿ0.2458 ÿ0.2487 ÿ0.2487 ÿ0.2490 ÿ0.2491 ÿ0.2455 ÿ0.2455
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and kL, kT are the thermal conductivity coe�cients. The properties of PZT are taken as (see Xu et al.,
1995, Kapuria et al., 1999): �E1, E2, E3, G12, G23, G31���61:0, 61:0, 53:2, 22:6, 21:1, 21:1� GPa, �n12, n13,
n23�� �0:35, 0:38, 0:38�, �a1, a2, a3�� �1:5, 1:5, 2:0� � 10ÿ6 Kÿ1, �Z11, Z22, Z33�� �1:53, 1:53, 1:50� � 10ÿ8

F/m, p3 � 0:0007 C mÿ2 Kÿ1, k1 � k2 � k3 � 1:8 W mÿ1 Kÿ1, �d31, d32, d33, d15, d24� � �ÿ171, ÿ171,
374, 584, 584� � 10ÿ12 m/V.

Following thermal and electrical loads are considered:

Fig. 1. E�ect of ha=h on �w (0.5a, 0.5b, 0) for thermal load.
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1. a sinusoidal temperature rise at the bottom surface, T1�T0sin�px=a� sin�py=b�;
2. an actuating potential applied at the bottom surface, f1�f0sin�px=a� sin�py=b�:
The top surface of the sensor is kept at charge-free condition �D2 � 0� and the interface of the actuator
and the substrate is grounded �f3 � 0). The results for these loads are nondimensionalised as follows
with S � a=h: dT � 374� 10ÿ12 C Nÿ1:

Fig. 2. E�ect of ha=h on �u (0, 0.5b, ÿ0.5h ) for thermal load.
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1. � �u, �w��100�u, w=S �=aTShT0, � �sy, �tzx���sy, tzx=S �=aTETT0, �f�1000fdT=aThT0;
2. � ~u, ~w���u, w=S �=SdTf0, � �sx, �tyz���sx, Styz�h=ETdTf0:

The uncoupled 2D theories (see e.g. Jonnalagadda et al., 1994), the present coupled 2D theories
including the coupling due to direct piezoelectric and pyroelectric e�ects and the present coupled 2D

Fig. 3. E�ect of ha=h on �sy (0.5a, 0.5b, ÿ0.5h + hÿa � in the substrate for thermal load.
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theories excluding the pyroelectric e�ect are assessed by comparison with the exact 3D solution
presented by Xu et al. (1995) and Kapuria et al. (1999). The results for hybrid plates with actuating
layer of thickness h/10 subjected to thermal load of case 1 are compared in Table 1. The de¯ection �w,
inplane displacement �u, predominant inplane normal stress �sy in the substrate and the actuator,
predominant transverse shear stress �tzx and induced potential �f are tabulated for three values of S, viz;

Fig. 4. E�ect of ha=h on �sy (0.5a, 0.5b, ÿ0.5h ) in the actuator for thermal load.
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4 (thick plate), 10 (moderately thick plate) and 100 (thin plate). It is observed that the inclusion of the
coupling e�ect improves the accuracy of the 2D solutions for all the response entities for thin plates,
especially so for the stress �sy in the actuator layer which is poorly predicted by the uncoupled theories.
The potential �f induced in the sensor layer is not directly predicted by the uncoupled theories, but it is
very well predicted by the coupled theories for thin to moderately thick plates. It is observed that all

Fig. 5. E�ect of ha=h on sensory potential �f (0.5a, 0.5b, 0.5h ) for thermal load.
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these 2D theories are inaccurate for thick plate with S � 4: There is little di�erence between the results
for �w, �u, �sy, �tzx obtained by the uncoupled 2D theories and the coupled 2D theories without the
pyroelectric term. It is concluded that the pyroelectric term has more signi®cant e�ect than the direct
piezoelectric term in case of thermal load. The results of coupled FSDT solution do not show overall
improvement over those of coupled CLT solution, there being marginal deterioration in the results of �w,
�u, �tzx and slight improvement in those of �sy and �f:
The e�ect of the thickness of the actuator layer on the response entities obtained by various 2D

theories for plates with a=h � 10 and 100 is compared with the exact 3D solution in Figs. 1±5. It is
noticed the inclusion of the direct piezoelectric e�ect in FSDT does not cause any signi®cant change in
the results for �w, �u and �sy in the substrate. Coupling due to pyroelectric term has signi®cant e�ect on
the displacements, particularly for the thicker actuator layers. For thin plates, coupled 2D theories
(including both pyroelectric and direct piezoelectric e�ect) yield signi®cant improvement in the values of
�w, �u for all values of ha=h: In general, the coupled theories yield better estimates of the displacements for
moderately thick plates as well, except for some intermediate range of values of the actuator thickness.
The improvement in these results is more pronounced for larger thickness of the actuator layer. Fig. 3
shows that the electrothermomechanical coupling does not have any appreciable e�ect on the stress �sy
in the substrate. However, it is observed from Fig. 4 that the stress �sy in the actuator is signi®cantly
a�ected by coupling. The 2D coupled theories yield substantial improvement in the values of �sy in the
actuator for thin plates as well as for moderately thick plates. The coupled FSDT theories predict much
better the stress �sy in the actuator layer as its thickness increases. It is noticed from Fig. 5 that the
coupled theories predict very well the sensory potential induced in the top surface for thin to moderately
thick plates. Inclusion of only the direct piezoelectric e�ect in FSDT is found to worsen the estimate for
the stress �sy in the actuator and the potential in the sensor.

Results for midsurface de¯ection ~w, inplane displacement ~u at the bottom surface, predominant
normal stress ~sx at the top and bottom of the substrate, ~sx at the top of the actuator and predominant

Table 2

Comparative study of 2D solutions for potential load �ha=h � 0:1)

S Exact Uncoupled Coupled

FSDT CLT FSDT CLT

�w (0.5a, 0.5b, 0) 4 0.2136 0.1735 0.1865 0.1674 0.1801

10 0.1876 0.1846 0.1865 0.1781 0.1801

100 0.1810 0.1865 0.1865 0.1801 0.1801

�u (0, 0.5b, ÿ0.5h ) 4 0.4365 0.3874 0.4083 0.3818 0.4021

10 0.4068 0.4036 0.4083 0.3976 0.4021

100 0.4030 0.4082 0.4083 0.4020 0.4021

�sx (0.5a, 0.5b, 0.4+h ) 4 ÿ19.94 ÿ18.79 ÿ19.70 ÿ18.59 ÿ19.47
10 ÿ19.48 ÿ19.50 ÿ19.70 ÿ19.27 ÿ19.47
100 ÿ19.50 ÿ19.70 ÿ19.70 ÿ19.46 ÿ19.47

�sx (0.5a, 0.5b, 0.4ÿh ) 4 2.521 3.216 3.409 4.040 4.181

10 3.733 3.366 3.409 4.152 4.185

100 4.077 3.408 3.409 4.185 4.186

�sx (0.5a, 0.5b, ÿ0.4ÿh) 4 30.67 31.84 31.65 32.15 31.98

10 31.76 31.69 31.65 32.09 32.05

100 32.00 31.65 31.65 32.07 32.07

�tyz (0.5a, 0, ÿ0.4h ) 4 ÿ6.515 ÿ7.907 ÿ8.038 ÿ7.982 ÿ8.107
10 ÿ7.770 ÿ8.009 ÿ8.038 ÿ8.079 ÿ8.107
100 ÿ8.094 ÿ8.038 ÿ8.038 ÿ8.107 ÿ8.107

S. Kapuria, P.C. Dumir / International Journal of Solids and Structures 37 (2000) 6131±61536146



transverse shear stress ~tyz at the actuator-substrate interface in hybrid plates under sinusoidal potential
load of case 2 are presented in Table 2. In this case the coupling is due to the direct piezoelectric e�ect

only. It is observed that for the thin plates the coupled 2D solutions for all the response entities are
much closer to the 3D exact solution. However, for the present case, the results of the coupled 2D
solutions for the thicker plates show slight deterioration relative to those for the uncoupled 2D

Fig. 6. E�ect of ha=h on ~w (0.5a, 0.5b, 0) for potential load.
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solutions. It is observed the the inclusion of the shear deformation e�ect in the 2D theory does not
improve the results. The e�ect of the actuator thickness ratio, ha=h, on the response for the potential
load case is shown in Figs. 6±11. These ®gures reveal that for thin hybrid plates the coupled 2D theories
yield more accurate results than the uncoupled ones for all values of ha=h: The coupling does not have
much e�ect on the maximum inplane stress ~sx in the substrate at the bottom interface (Fig. 8). Fig. 9±

Fig. 7. E�ect of ha=h on ~u (0, 0.5b, ÿ0.5h ) for potential load.
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11 reveal that the inplane stress ~sx at the top interface of the substrate, the inplane stress ~sx in the
actuator and the shear stress ~tyz at the actuator-substrate interface are predicted more accurately by the
coupled 2D theories than the uncoupled ones. The e�ect of coupling becomes more pronounced as the
actuator thickness increases. The stress ~sx in the actuator is better estimated by including the coupling
e�ect for thicker plates as well.

Fig. 8. E�ect of ha=h on ~sx �0:5a,0:5b,ÿ 0:5h� hÿa � at bottom of the substrate for potential load.
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5. Conclusions

Coupled CLT and FSDT formulations are presented for simply-supported hybrid rectangular plate
without any adhoc assumptions on the through-the-thickness variations of electric potential and
temperature. The comparison of these 2D coupled theories with the 2D uncoupled and 3D exact

Fig. 9. E�ect of ha=h on ~sx �0:5a, 0:5b, 0:4hÿ� at top of the substrate for potential load.
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solutions reveals that the pyroelectric e�ect is predominant in case of thermal loading, whereas the
direct piezoelectric e�ect is signi®cant in the potential load case. The inclusion of the coupling e�ect
signi®cantly improves the 2D solutions for thermal and potential loads for thin plates. The coupling has
signi®cant e�ect on the displacements, the inplane stress in the actuator and the interlaminar shear stress
at the substrate-actuator interface. The e�ect of the coupling generally increases with the thickness of

Fig. 10. E�ect of ha=h on ~sx (0.5a, 0.5b, ÿ0.5h ) in the actuator for potential load.
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the actuator layer. The coupling does not have any apprciable e�ect on the maximum value of the

inplane normal stress in the substrate for the two load cases. The coupled theories predict the sensory

potential very well for thin to moderately thick plates. The coupled FSDT solution shows marginal

improvement in some results and slight deterioration in others. Therefore, there is a need to improve

upon the incorporation of the shear deformation e�ect in a 2D theory.

Fig. 11. E�ect of ha=h on ~tyz (0.5a, 0, ÿ0.4h ) for potential load.
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