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Abstract

The first order shear deformation plate theory is presented for simply-supported, cross-ply laminated, rectangular
hybrid plate without assuming a priori the distribution of electric potential and temperature across its thickness. The
coupled constitutive equations for electric displacement are used in the charge equation of equilibrium to obtain its
solution in terms of displacements of the plate. The Navier type solution for static thermoelectric load is used in
three dimensional equilibrium equations to get transverse stress components. This theory is assessed by comparison
with the three dimensional solution. The influence of the coupled effects is found to be significant for relatively thick
piezoelectric layers. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Smart plate and shell structures are currently being developed using piezoelectric layers for sensing,
actuation and control. Exact three dimensional (3D) solutions have been presented for piezoelectric (see
Ray et al., 1992; Dube et al., 1996) and hybrid (see Xu et al., 1995; Kapuria et al., 1997, 1999) simply
supported rectangular plates under thermoelectromechanical loads. Assessment of uncoupled 2D
classical lamination theory (CLT) and first order shear deformation theory (FSDT) developed by
Tauchert (1992) and Jonnalagadda et al. (1994) for hybrid plates has been presented by Tang et al.
(1996) for rectangular plates by comparison with 3D solution for simply supported edges. In general,
the direct piezoelectric effect, the constitutive equations of electric displacement and the charge equation
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of equilibrium are ignored and the electric potential is assumed a priori to vary linearly across the
thickness of the actuated layer. Tzou and Ye (1994) have included the direct piezoelectric effect in their
theory in an adhoc manner and did not satisfy the charge equation of equilibrium. Noda and Kimura
(1998) have presented classical plate theory formulation in which the charge equations of equilibrium
are solved in terms of the deflection of the plate. However, the temperature is apriori assumed to vary
linearly across the thickness of the hybrid plate.

In this work, a coupled first order shear deformation plate theory is presented for rectangular hybrid
plate without any a priori assumption of the distribution of electric potential and temperature across its
thickness. The thermal equilibrium equations are solved exactly. The coupled constitutive equations of
electric displacement are used in the charge equations of equilibrium to obtain the exact solution for the
electric potential in terms of the displacements of the panel. Fourier series solution is presented for
simply-supported hybrid plates consisting of cross-ply composite elastic substrate with some piezoelectric
layers subjected to static electrothermomechanical load. This solution is used in 3D equilibrium
equations to obtain transverse stresses. The deflection and stresses obtained by the present theory are
compared with the 3D solution to assess this theory. The coupled effects have significant influence on
the response for relatively thick piezoelectric layers.

2. Solution for coupled FSDT

Consider an L-layered hybrid rectangular plate of sides @ and b, made of cross-ply composite laminate
and piezoelectric laminae with the principal directions along the Cartesian coordinates. The Cartesian
coordinates x, y span the midplane. At x=0,a, and at y =0,b the panel is simply-supported,
electrically grounded and held at the stress-free reference temperature. The electric field induced due to
stress and temperature is not neglected compared to the electric field applied for actuation. Denoting
differentiation by subscript comma, in FSDT the displacements (u, v, w) at (x, y, z) are approximated
as

U= uo(x, W+ (x, ), v= vo(x, »+ zt//y(x, », w= wo(x, »), (1)
where #°, 0, w° are displacements of midplane and v, Y, are rotations of its normal. The strains are
0
u
éx ™ wx, X &z O 0
g | =&"+zx, &= . ok=| Y, I Yy +w, )
to ] Wt d Lnd [

For linecar orthorohmbic piezoelectric material of class mm2, polarised in direction z with principal
directions along x, y, z, the constitutive equations relating the stress g, the strain ¢, the electric field
E=(EE, E.)", the electric displacement D = (D,, D,, D.)" and the temperature rise 7 above the
stress-free reference temperature, are related by

e=So+d"E+aT, D =ecee+nE+pT 3)

with e = dS ! and superscript T denotes matrix transpose. S, d, e, o, 1, p are respectively the matrices
of elastic compliance, piezoelectric strain constants, piezoelectric stress constants, coefficients of thermal
expansion, permittivities for constant strain field and pyroelectric constants for constant strain field,
with
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1/E Vo /Ey, —v31/E3 0 0 0 0 0 dy
—vio/E1 1/E» —v/E; 0 0 0 0 0 dn
g —vis/E1  —vi/E, 1/E3 0 0 0 JT 0 0 dsy
10 0 0 1/Gy; 0 0 ’ 10 d O ’
0 0 0 0 1/Gy; 0 dis 0 0
0 0 0 0 0 1/G» 0 0 0
o]
Zz m 0 0 0 0 0 0 e5 0 0 “)
o= 03;1:0 Ny 0 |, e=|[0 0 0 ey 0 0, p=|0 |,
0 0 0 5 e3; exn ez 0 0 0 D3
0
(o
E:_ (t),y s
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where E; are Young’s moduli, v; are Poisson’s ratios, G; are shear moduli and ¢ is the electric
potential. As by Tauchert (1992), Jonnalagadda et al. (1994) and Tang et al. (1996), the temperature
dependence of material properties has not been included. Using Eq. (2) and the plate theory assumption
of 0. ~ 0, Eq. (3) yields

Ox Oun O 0 &x e3 By
Tyz Yy, + e ,
I ESI SN | N AP el T R b e B
Ty 0 0 Q6 | | Vxy 0 0 X 2x x
D, = €15Vzx — nll¢,x’ D,V = €247y — n22¢,y’ D: =e3ec + €328y — ’7334),2 + 3T, (6)
with
E Vi E E
Oll=——— On=—2_ On=—"2—\ Q=Gnes =0nds + Qs
1 —viava 1 —viava 1 —viava

ey = Qndyi + 0ndn, fi =0no + Qnan, = 0101 + 000,044 = Gz, QOss = Gsy, ™
€4 = Quadhs, €15 = QOssd)s

The force and moment resultants (Ny, Ny, Ny, O«, O,, M, M,, M,,) for the edge of the midplane and
the load (py, p,, p-, my, m,) per unit area of the midplane are defined in terms of the stresses by

h/2
[Ny, Ny, Ny, Qx, Qps My, My, My | = J [Oxs Oys Tays Tzxs Tzys Z0x, 20y, ZTxy] d2Z,
—h/2
h/2
(Px> Pys Pz> My, My) = [Tzxs Tzys Oz ZTzx,s ZTZJ/']l_h/Z ®)

where £ is the plate thickness. Using expressions of stresses from Eq. (5) in Eq. (8) yields following
relations between the resultants and displacements:
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and

[N;, NS¢, N, N

2o

I:QS} _ Jh/z I:els(ﬁ’x} dZ

o5 il sty

[4y, By, Dyl = ffﬁz k;Qill, z, z?]dz and k; =1 except for kj, = kg5 = 5/6. The boundary conditions
are taken as: '

(10)

x=0,a: Ne=0, =w'=0, =0, M,=0, T=0, =0,

y=0,b: N,=0, ®=w’'=0, =0, M, =0, T=0, $=0 (11)

Let the interfaces of the actuator layers with the elastic substrate be grounded, the ambient temperatures
at z= Fh/2 be Ti(x), T>(x) and hy, h, be the convective heat transfer coefficients at z = F /2. The
thermal and the electric potential problems are solved exactly. The variables are expanded in Fourier
series as:

(”0’ Vs Oxs Pxs My, ‘sz)mncosn_qx sinny,

2
gk

(uoa lpxa Qx> pxa mx; sz) =

3
I
3
Il

]2
M2

<V09 lp)w st p}’a mya Tyz) -

0 . - -
(v Wy Oy, Pys My, ryz) sinmx cosny,
mn
1

3
]
i

(WO; pZa Gx; 6)/" O-Za NX) Ny, an M_V’ Ta ¢)

o0 o0
0 e
= E E (w s Dz, 0x,0y,0:, No, Ny, M, M, T, (/))mnsmmx sinny,

m=1 n=1

o0 o0
(rxy, Ny, Mxy) = Z Z(axy, Ny, Mxy)mncosﬁqx cosiy, (12)
m

=1 n=

with m = mn/a, n = nn/b. The thermal equilibrium equation without body heat source is
kx T,xx + ky T,yy + k. T,:z =0, ie., Tmn, zz (n_/l2kx + ﬁzky) Tmn/kz =0, (13)

where ki, k), k. are thermal conductivity coefficients. The solution for the kth layer between z;_; and z
in terms of constants A" is
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(k) :
k )
To(2) = D A & (14)
i=1

where p,, = —py = u®) = [P + ﬁzk_ﬂ;"))/kf,k)]l/ 2. The superscript k refers to the kth lamina. This
superscript will often be omitted for simplicity. Let the (m, n)th Fourier component of the heat flow
rate and temperature at the surface at z; be ¢, =—k®T% | _ and T%, . Using Eq. (14), the transfer

Z=Z} mn-*
function H for these is obtained as

[Tﬁm} I - coshii,,  —sinhji,/c
k - s K — )
Drnn gk —csinhjii®)  coshp®)
(15)
e Am] [05 —05/T| T
e Ay | TLo5 05/ || u-n
with ¢ = kP u® 7 ® — 3 ® (2 — 2 1), w*=u®z . The global transfer function H is obtained as
Tk, T Hy  Hp
=H| " |, where H= =H H;,_,---HH,. 16
[%Lnn o Hy  Hxy PR (16)
The thermal boundary conditions at z = F//2 are:
= =—h(TY,—T,,) _2 L =m(TL, - 1T,,) 17
- 2 N qmn - 1 mn lwm)s 2= 2‘ qmn =2 mn 2 ( )

The case of prescribed surface temperatures corresponds to /; = iy = co. Using Egs. (16) and (17),
yields
(hoHiy — Hy) T, — T

TO _ mn mn , 0 - —h TO _T 18
mn Hsy — hoHyy — hyHyy + hyho Hys Dnn 1( mn lmn) (18)

The constants A" in the solution (14) for T, are then obtained successively using Eq. (15).

Using the constitutive Eq. (6), the expansions (12) and the solution (14) for temperature, in the charge
equation of equilibrium without any body charge, viz., D  + D, , + D. . =0, reduces it to the
following form for a point in the kth layer:

n33d)mn, zz (’/;121711 + ﬁznZZ)qsmn

2
— (m’e1s + ii*e2s ), + p3 D pa Ayt e (19)

i=1

= —m(es1 +e1s)Y, —nlexn +eun)y,

Xmn mn

Its solution in terms of constants B} is given by

2 mn Lz I’}_/l(€31 + els)(k)wxmn + 5(632 + 824)(]()1//)/,”7” + (’/}_/l2e(1k$) + ’712 egjl))wgm
i=l (umn’/’33)
2 Lz
. <p_s)<“ puAf e o0
vs) (o2 - 23)"
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where o) =[N m? +70a2) B2, 91 =—ys =a). Using Eq. (20) in (6) yields

mn mn*

k = (k 0 z
Dlmn - I:megl)( Upn + ZW\mu)] - [ne(32)<vnm + Zl?b}’mn):l - 1133) ZB:ZH)) el

Amn (*)* ep,k

_ (k) Lonn
7 Z o

I‘)‘H’l

Substituting 7 and ¢ from Eqgs. (14) and (20) in Eq. (10) yields

[V, Mt | “ ﬁ ® -~ mn

N | ==X ] T e e

L™ R

rN¢ Ma 7 L (k) o ]\_/f Ml’
vioae ] =] s | 0T
L) dmn =1 i=1 €3 ]\]; M;

mn

e L 2 - 5 e
X meis | Vik pmn Q]t:| I:Q(l):| 0 I:Q% :| |:Q12:|
= b _Bi + e + Wi + + )
|: f‘: ]111n ; ; |: e ] Vik . |: 2t mn Q(2) mn Qé mnl//X”m Q22 mnlp}mn

where

o ik Zk ik Zk— o, — ik Zk ik Zk— o
gy = eS8 —e8 gy =z e — g e85 — gy g, for g = vy, pys

i L 2 pgk)p Aeg/x) '{_)
1 k . .
e L A
J dmn k=1 =113 33 (pzk Ocmcn ) "

205 | 2 (k)=

L
(2] =3 |5
Qg mn (k) (k)(pk—a(k)z)
i

k=1 I’l€24 i=1 ’/’3 mn

P L | me |z — - Lk
I M e R
2 dmn k=1| Neéyy N33 (xn;n

with
ok = mze(ks) +n eg’Z), i = m(es) + e15)®, Ly = (e, + exq)®

The equations of equilibrium without body force are:

Ny x+ Ny, y+px= 0, Nyy, x + Ny y+py = 0, O+ Oy, y+p.= 0,

My v+ My, —Ox+me=0, My +M,,—Q,+m,=0.

21)

(22)

(23)

(24a)

(24b)
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Using Egs. (9), (2) and (22), these reduce to following algebraic equations:
xmymm = p" 4 " B™ — Ry ™ (25)
with
um = [uo Wow Yy, ]T , P = [px +”_7<NT + Ni)] , P = [py + ﬁ(]\_/; + N;)] >

mn mn mn

mn

B <[00 5 ) 0]

P = [my + ﬁ(f\;lg + Mf) - QS’]mn,

11"2,c i = me31 Viks ;nz,‘ i = ne32 i, i=1,2,k=1,...,L

5 22 = (m2€(1k5) + ”25’(2]1)> il Vies By i = M(E(ﬁ)%k — %k/%k)
S 24 = ”(egkz)%/\ — e yzk/yik)’ R"=R/"=0,i=12j=1,....5

’3”?)” = (n_/lQ(l) + ﬁQg)mn’ ’?Zln = (’/;ZQ% + ﬁQ%)mn’ 35 = (le + I/lQ2 )mn’

mn __ )0 mn __ mn __ mn __ )0 mn __ Nl mn __
R43 - Q R44 - Ql R45 - Ql,,,,, R53 - QZW7 R54 - anm’ R55 - 2mn

Lo mn”’

_2 _2 R
1 =m An+n"Ae, X3 =mn(An+ Ae), Xi3 =X53 =0,
- -2 o
= m?By + i B, XY = X 55 = mit(Biy + Bes), Xan = 1’ Age +ii° A,

Xss = 1% Bgs + 1* Baa,
Xy = m?Ass +ii*Aas, Xag = mAss, Xss = iiAu,

Xag =m’Dyy 417 Deg + Ass,  Xas = mi(Diy + Deo),  Xss =m*Des + Doy + Aga, X" = X",

T
mn __ mn mn mn mn . pmn mn
B _[Bll 21 12 22 BlL 2L] .

The electric boundary conditions at z= +/4/2 may be prescribed values of ¢ or D.. The electric
potential of some interfaces may be prescribed. At an interface where the potential is not prescribed, the
two conditions of continuity of ¢ and D, are to be satisfied. At an interface where the potential is
prescribed, the conditions are that the potential of the two layers at this interface must equal the
prescribed potential. Thus the 2L unknown coeflicients B’ can be solved in terms of the displacement
variables. In particular, the following electrical boundary conditions are considered:
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z=—=h/2: ¢ =¢i(x,y), z=h/2: ¢ =Pyx,y)or D, = Dyx,y), (26a)

optionally at z = z1: ¢ = ¢;(x, »). (26b)

The continuity conditions at the interfaces are:

[(@, D)ee = [, DL [ k=1L 1 (260)

In case ¢ is applied, the continuity condition for D. at the first interface (k =1) is replaced by Eq.
(26b). Substitution of Egs. (20) and (21) into conditions Eq. (26) yields following algebraic equations for
Bj" in terms of the displacement variables:

Yn‘l}’lBl‘)‘H’l — le‘l Umn + G mn (27)

The non-zero elements of Y™, F"™ G"™ are:

mn __ \yizo mn _ AVikZk mn AV k1 Zk
Yy =en, e, 2k = L Yo gy = —el R

mn _ (k) Vi kZk mn _ (k+1) V), k+1%k s L

et 1, 2k—2+ = M33 Vjre €775, Yet1, 2k = N33 V) ket €1, forj=1,2,k=1,...,.L -1

if ¢, is prescribed, then
mn — YiLZL
Yoo ap—ayy =",
else
mn _ () Vi ZL
Yor on—o4; =M33 Vjr €77,

if ¢5 is prescribed:

mn

— aljifl
3] — e//] s

=& Py =d), P =& 6=+ ey,

mn

mn  __ (k) (k+1) mn (k) (k+1) mn  __ (k) (k+1) mn __ (k) (k+1)
2%, 3=C —C Ya=C —Cp o, Fyls=ci—os T, Gyl = —o
mn _ =k) ~(k+1) mn _ =k) ~(k+1) mn _ k) ~(k+1)
Yepl, 1 =C1 =€ oyl =60, Fyly a=00 =,

mn ~(k) _ ~(k+1) mn (k) _ S(k+1
2k+1ﬂ5=C5 _CS 5 G2k+1=C[C _Cg ), fOl‘k:l,...,L—l
if ¢, is prescribed:
mn (L) mn (L) mn  __ (L) mn __ (L)
Fors=a" Fya=c, Fis=c, Gy=¢ "+,

if D, is prescribed:

mn >

mn  __ =(L) mn  __ =(L) mn  __ L) mn  __ =(L) mn __ =(L)
F2L,l =c 0, Fy =67, Fy 4=0¢", FzL,s—Cs . Gy =¢ 7+ D
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if ¢ is prescribed:
_ _ D _ _ D
Fif=c, Fy'=c¢ , Fi'=c¢', G"=¢ +¢s5,.

where

_ _ (k)
®) mleis +ii”ex w_ o (enteas)?
c3 =\ , €y =—m 5 5
%33 %33

*) 2 o ez \
0 _5(332 + 324) 0 P_32A,~k P
5 - > - B}
%2 133 ! N33 ‘5 Pi —al,

& = —me), & =—nel), & =—rmzel), & = —iizell),
(k)
2 2 ik
Ay 2 apizk
~(k) ik %*mn
G ' =—\p) —3
( ; Pix — ar%m )
The solution of Eq. (27) yields

B — IEI””Umn + G_m” (28)

~mn

where F™"' =[y ™)~ Fpmn G™ =[y™]~'G ™. Substituting B™ from Eq. (28) in Eq. (25) yields following
explicit algebraic equations for U™

(an _ E—,mnan T Rmn)Umn _ }—)mn 4 E—,an-mn (29)

These are solved for U™ and B™" are then obtained from Eq. (28). A convergence study would decide
the number of terms to be retained in the Fourier series for desired accuracy. The inplane stresses are
obtained from Eq. (5) using Eqgs. (12), (14) and (20). Three-dimensional equilibrium equations are then
used to obtain transverse stresses: T-y = — [(0y, x + Tyy, y) dz, Ty = — [(0), ) + Tay, ¥) dz, 02 = — [(Toy, « +
Toy, y) dz.

3. Solution for coupled CLT

The transverse shear strains are neglected in CLT. The solution for coupled CLT is similar to that for
the coupled FSDT with the following changes. The shear stress resultants Q., O, are not obtained from
the constitutive equations (5), but from the equilibrium equations (24b). These are substituted in the
third equilibrium equation of (24a) to yield

M, o+ 2Mxy, xy T My, yy T My x+my , +p= 0. (30)

The fourth and fifth equilibrium equations (24b) are replaced by the following equations for zero
transverse shear strains:

v, = —wg, x//y = —Wg,. (31
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Table 1

Comparative study of 2D solutions for thermal load (4,/h = 0.1)

S Exact Uncoupled Coupled (no pyroelectric effect) Coupled
FSDT CLT FSDT CLT FSDT CLT
w (0.5a, 0.5, 0) 4 —0.3418 —0.5832 —0.5718 —0.5811 —0.5705 —0.5697 —0.5565
10 —0.5372 —0.5866 —0.5840 —0.5879 —0.5855 —0.5697 —0.5668
100 —0.5696 —0.5864 —0.5864 —0.5886 —0.5886 —0.5688 —0.5688
i (0, 0.5h, —0.5h) 4 —2.238 —1.553 —1.672 —1.551 —1.671 —1.541 —1.659
10 —1.873 —1.758 —1.785 —1.759 —1.786 —1.743 —1.769
100 —1.796 —1.809 —1.809 —1.811 —1.811 —1.793 —1.794
Gy (0.5a, 0.5, 0.4 h) 4 —0.8704 —0.8866 —0.8896 —0.8866 —0.8897 —0.8870 —0.8900
10 —0.8988 —0.9029 —0.9036 —0.9028 —0.9035 —0.9033 —0.9040
100 —0.9068 —0.9064 —0.9064 —0.9064 —0.9064 —0.9068 —0.9068
Gy (0.5a, 0.5b, —0.5h) 4 1.281 —1.000 —1.240 —0.0910 —0.1151 —1.852 —2.089
10 —0.0753 —0.0902 —0.0956 —0.0802 —0.0856 —0.1443 —0.1497
100 —0.1333 —0.0894 —0.0895 —0.0792 —0.0792 —0.1371 —0.1372
¢ (0.5a, 0.5b, 0.5h) 4 0.1645 - - 0.0889 0.0530 0.8954 0.8700
10 0.7564 - - —0.0922 —0.1008 0.9938 0.9875
100 0.9548 - - —0.1375 —0.1376 1.017 1.017
7.y (0, 0.5, —0.3h) 4 —0.2451 —0.1962 —0.2135 —0.1958 —0.2131 —0.1937 —0.2108
10 —0.2468 —0.2384 —0.2423 —0.2386 —0.2426 —0.2354 —0.2393
100 —0.2458 —0.2487 —0.2487 —0.2490 —0.2491 —0.2455 —0.2455

Thus the first and second rows of matrices X", E’ m, R™ P™" are the same as in FSDT and the non-
zero elements in the third to fifth rows of these matrices are given by

" = i’ Byy + mi(2Bgs + B1a), " = i?i(Biy + 2Bes) + it Baa,

S’T = }’;13D11 —+ n-’l}’_l2(2D66 + D12)a 3715’1

mn __ mn __ mn __ =
Xyy=m, Xy=1 Xg=n

= I A P
3, 2k—2+4i = (m e3 tniey )Vika Py

4. Results and discussion

mn __
XSS - 1’

= m?i(D1» + 2Dgs) + i1 Do,

[ = P s im0 (M5 4+ M) + 72 (M3 + M) |

mn

Results are presented for simply supported hybrid square plate made of 8-layered cross-ply graphite-
epoxy laminate [0°/90°/0°/0°]s with PZT layers bonded to its faces. The orientation is given relative to x-
direction. The top PZT layer acts as a sensor and the bottom one as an actuator. All plies of the elastic
substrate laminate have equal thickness. The thickness of the sensor layer is taken as /4/10 and the
thickness of the actuator layer has been varied. The properties of graphite-epoxy composite are selected
as (see Xu et al., 1995; Kapuria et al., 1999): (Er, Er, Grr, Grr)=(181, 10.3, 7.17, 2.87) GPa, d;=0, p3
=0, (g, a7)=(0.02, 22.5) x 107° K™, (vi7, vrr) =(0.28, 0.33),(17,,, n77) =(30.96, 26.53) x 10~'2 F/m,
(kr, kr) = (36.42,0.96) W m~' K~', where L and T denote directions parallel and transverse to the
fibres, v, 1s Poisson’s ratio for strain in the 7 direction under uniaxial normal stress in the L direction,
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Fig. 1. Effect of h,/h on w (0.5a, 0.5h, 0) for thermal load.

and k;, kr are the thermal conductivity coefficients. The properties of PZT are taken as (see Xu et al.,
1995, Kapuria et al., 1999) (El, Ez, E3, Glz, G23, G31)=(610, 610, 532, 226, 211, 211) GPa, (V12, Vi3,
v23)=(0.35, 0.38, 0.38), (21, o2, a3)=(1.5, 1.5, 2.0) x 107 K™, (17,1, 1122, 1133) =(1.53, 1.53, 1.50) x 1078
F/m, p3 =0.0007 C m2 K™, ki =k, =k; = 1.8 W m™' K™\, (ds1, dsp, ds3, dis, dos) =(—171, —171,
374, 584, 584) x 10~12 m/V.

Following thermal and electrical loads are considered:
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Fig. 2. Effect of h,/h on u (0, 0.5h, —0.5h) for thermal load.

1. a sinusoidal temperature rise at the bottom surface, 7| = Tysin(nx/a) sin(ny/b);
2. an actuating potential applied at the bottom surface, ¢, =¢sin(nx/a) sin(ny/b).

The top surface of the sensor is kept at charge-free condition (D, = 0) and the interface of the actuator
and the substrate is grounded (¢; = 0). The results for these loads are nondimensionalised as follows
with S = a/h. dr =374 x 10712 C N™":
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Fig. 3. Effect of /,/h on G, (0.5a, 0.5b, —0.5h + h;) in the substrate for thermal load.

1. (&, w)=100(u, w/S)/arShTy, (Gy, Tox)=(0y, T-x/S)/arErTo, ¢=1000¢dr/orhTy;

2. (u, wy=(u, w/S)/Sdr¢y, (0x, Ty:)=(0x, STy2)h/Erdrd)).

The uncoupled 2D theories (see e.g. Jonnalagadda et al., 1994), the present coupled 2D theories
including the coupling due to direct piezoelectric and pyroelectric effects and the present coupled 2D
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Fig. 4. Effect of /,/h on G, (0.5a, 0.5b, —0.5/) in the actuator for thermal load.

theories excluding the pyroelectric effect are assessed by comparison with the exact 3D solution
presented by Xu et al. (1995) and Kapuria et al. (1999). The results for hybrid plates with actuating
layer of thickness //10 subjected to thermal load of case 1 are compared in Table 1. The deflection w,
inplane displacement u, predominant inplane normal stress oy in the substrate and the actuator,
predominant transverse shear stress 7., and induced potential ¢ are tabulated for three values of S, viz;
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Fig. 5. Effect of h,/h on sensory potential ¢ (0.5a, 0.5b, 0.5h) for thermal load.

4 (thick plate), 10 (moderately thick plate) and 100 (thin plate). It is observed that the inclusion of the
coupling effect improves the accuracy of the 2D solutions for all the response entities for thin plates,
especially so for the stress ¢, in the actuator layer which is poorly predicted by the uncoupled theories.
The potential ¢ induced in the sensor layer is not directly predicted by the uncoupled theories, but it is
very well predicted by the coupled theories for thin to moderately thick plates. It is observed that all
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Table 2
Comparative study of 2D solutions for potential load (h,/h = 0.1)

S Exact Uncoupled Coupled
FSDT CLT FSDT CLT
w (0.5a, 0.5b, 0) 4 0.2136 0.1735 0.1865 0.1674 0.1801
10 0.1876 0.1846 0.1865 0.1781 0.1801
100 0.1810 0.1865 0.1865 0.1801 0.1801
i (0, 0.5h, —0.5h) 4 0.4365 0.3874 0.4083 0.3818 0.4021
10 0.4068 0.4036 0.4083 0.3976 0.4021
100 0.4030 0.4082 0.4083 0.4020 0.4021
oy (0.5a, 0.5b, 0.4 h) 4 —19.94 —18.79 —19.70 —18.59 —19.47
10 —19.48 —19.50 —-19.70 —19.27 —19.47
100 —19.50 —19.70 —19.70 —19.46 —19.47
ay (0.5a, 0.5b, 0.47h) 4 2.521 3.216 3.409 4.040 4.181
10 3.733 3.366 3.409 4.152 4.185
100 4.077 3.408 3.409 4.185 4.186
gy (0.5a, 0.5h, —0.47h) 4 30.67 31.84 31.65 32.15 31.98
10 31.76 31.69 31.65 32.09 32.05
100 32.00 31.65 31.65 32.07 32.07
7,- (0.5a, 0, —0.4h) 4 —6.515 —7.907 —8.038 —7.982 —8.107
10 —7.770 —8.009 —8.038 —8.079 —8.107
100 —8.094 —8.038 —8.038 —8.107 —8.107

these 2D theories are inaccurate for thick plate with S = 4. There is little difference between the results
for w, i, G,, 7. obtained by the uncoupled 2D theories and the coupled 2D theories without the
pyroelectric term. It is concluded that the pyroelectric term has more significant effect than the direct
piezoelectric term in case of thermal load. The results of coupled FSDT solution do not show overall
improvement over those of coupled CLT solution, there being marginal deterioration in the results of w,
i, T, and slight improvement in those of 6, and ¢.

The effect of the thickness of the actuator layer on the response entities obtained by various 2D
theories for plates with a/h =10 and 100 is compared with the exact 3D solution in Figs. 1-5. It is
noticed the inclusion of the direct piezoelectric effect in FSDT does not cause any significant change in
the results for w, u and &, in the substrate. Coupling due to pyroelectric term has significant effect on
the displacements, particularly for the thicker actuator layers. For thin plates, coupled 2D theories
(including both pyroelectric and direct piezoelectric effect) yield significant improvement in the values of
w, u for all values of /,/h. In general, the coupled theories yield better estimates of the displacements for
moderately thick plates as well, except for some intermediate range of values of the actuator thickness.
The improvement in these results is more pronounced for larger thickness of the actuator layer. Fig. 3
shows that the electrothermomechanical coupling does not have any appreciable effect on the stress o,
in the substrate. However, it is observed from Fig. 4 that the stress ¢, in the actuator is significantly
affected by coupling. The 2D coupled theories yield substantial improvement in the values of ¢, in the
actuator for thin plates as well as for moderately thick plates. The coupled FSDT theories predict much
better the stress ¢, in the actuator layer as its thickness increases. It is noticed from Fig. 5 that the
coupled theories predict very well the sensory potential induced in the top surface for thin to moderately
thick plates. Inclusion of only the direct piezoelectric effect in FSDT is found to worsen the estimate for
the stress 6, in the actuator and the potential in the sensor.

Results for midsurface deflection w, inplane displacement # at the bottom surface, predominant
normal stress ¢, at the top and bottom of the substrate, o, at the top of the actuator and predominant
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Fig. 6. Effect of h,/h on w (0.5a, 0.5b, 0) for potential load.

transverse shear stress 7,. at the actuator-substrate interface in hybrid plates under sinusoidal potential
load of case 2 are presented in Table 2. In this case the coupling is due to the direct piezoelectric effect
only. It is observed that for the thin plates the coupled 2D solutions for all the response entities are
much closer to the 3D exact solution. However, for the present case, the results of the coupled 2D
solutions for the thicker plates show slight deterioration relative to those for the uncoupled 2D
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Fig. 7. Effect of h,/h on u (0, 0.5h, —0.5h) for potential load.

solutions. It is observed the the inclusion of the shear deformation effect in the 2D theory does not
improve the results. The effect of the actuator thickness ratio, h,/h, on the response for the potential
load case is shown in Figs. 6-11. These figures reveal that for thin hybrid plates the coupled 2D theories
yield more accurate results than the uncoupled ones for all values of /,/h. The coupling does not have
much effect on the maximum inplane stress ¢, in the substrate at the bottom interface (Fig. 8). Fig. 9—
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Fig. 8. Effect of /,/h on 6, (0.5a,0.5b, — 0.5/ + h;") at bottom of the substrate for potential load.

11 reveal that the inplane stress ¢, at the top interface of the substrate, the inplane stress o, in the
actuator and the shear stress 7,. at the actuator-substrate interface are predicted more accurately by the
coupled 2D theories than the uncoupled ones. The effect of coupling becomes more pronounced as the
actuator thickness increases. The stress ¢, in the actuator is better estimated by including the coupling
effect for thicker plates as well.
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Fig. 9. Effect of 4,/h on 6, (0.5a, 0.5b, 0.4h~) at top of the substrate for potential load.

5. Conclusions

Coupled CLT and FSDT formulations are presented for simply-supported hybrid rectangular plate
without any adhoc assumptions on the through-the-thickness variations of electric potential and
temperature. The comparison of these 2D coupled theories with the 2D uncoupled and 3D exact
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Fig. 10. Effect of h,/h on 6, (0.5a, 0.5b, —0.5h) in the actuator for potential load.

solutions reveals that the pyroelectric effect is predominant in case of thermal loading, whereas the
direct piezoelectric effect is significant in the potential load case. The inclusion of the coupling effect
significantly improves the 2D solutions for thermal and potential loads for thin plates. The coupling has
significant effect on the displacements, the inplane stress in the actuator and the interlaminar shear stress
at the substrate-actuator interface. The effect of the coupling generally increases with the thickness of
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the actuator layer. The coupling does not have any apprciable effect on the maximum value of the
inplane normal stress in the substrate for the two load cases. The coupled theories predict the sensory
potential very well for thin to moderately thick plates. The coupled FSDT solution shows marginal
improvement in some results and slight deterioration in others. Therefore, there is a need to improve

upon the incorporati

Fig. 11. Effect of h,/h on 7,. (0.5a, 0, —0.4h) for potential load.

on of the shear deformation effect in a 2D theory.
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